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Summary. Accurate prediction of the cumulated genetic 
gain requires predicting genetic variance over time under 
the joint effects of selection and limited population size. 
An algorithm is proposed to quantify at each generation 
the effects of these factors on average coefficient of in- 
breeding, genetic variance, and genetic mean, under a 
purely additive polygenic model, with no mutation, and 
under the assumption of absence of inbreeding depres- 
sion on viability affecting selection differentials. This 
algorithm is relevant to populations where mating is at 
random and generations do not overlap. It was tested via 
Monte Carlo simulation on a population of 3 males and 
25 females mass selected out of 50 candidates of each sex, 
over 30 generations. For two values of the initial herita- 
bility of the selected trait, 0.5 and 0.9 (to represent high 
accuracy in index selection), predicted values of the genet- 
ic variance are in agreement with observed results up to 
the 12th and 19th generations, respectively. Beyond these 
generations, the variance is overestimated, due to an un- 
derestimation of the effect of selection on the rate of 
inbreeding. Finally, the algorithm provides predictions of 
the cumulated responses close to the observed values in 
both selected populations. It is concluded that, as regards 
the hypotheses of the study, the proposed algorithm is 
satisfactory, and could be used to optimize selection 
methods with respect to the cumulated genetic gain in the 
mid- or long-term. Possible extensions of the algorithm 
to more realistic situations are discussed. 
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Introduction 

Mid- and long-term responses to selection depend on 
changes occurring in additive-genetic variance. Accurate 
prediction over time is, therefore, highly dependent on 
the quality of prediction for genetic variance. This is all 
the more true when very high genetic gains are expected, 
e.g., in some Multiple Ovulation and Embryo Transfer 
selection systems (Nicholas and Smith 1983; Ruane and 
Thompson 1989; Colleau and Mocquot 1989). The prob- 
lem addressed here will be that for a fully polygenic and 
additive trait, i.e., a very large number of independent 
additive loci control the genetic variance of this trait. 

In this genetic context, directional selection modifies 
the genetic variance, first by inducing linkage disequi- 
librium [as first mentioned by Lush, (1945, pp. 141-143) 
and studied by Bulmer (1971)], and second by enhancing 
loss of variation through inbreeding if the population is 
of limited size (Lush 1946; Robertson 1961). 

This last effect depends on the genetic variance being 
submitted to selection and, therefore, depends on time. 
Some experimental work shows that the effect of selection 
on the rate of inbreeding decreases with time (Kownacki 
et al. 1981, 1987). Such a phenomenon was not taken into 
account in the first algorithms proposed to predict the 
change in genetic variance with respect to time (Dempfle 
1975; Keightley and Hill 1987; Chevalet 1988), since they 
used the asymptotic concept of effective size and since this 
value is computed as under pure drift. Robertson (1961) 
and Burrows (1984 a, b) derived formulae to compute the 
effective size when one generation of selection occurs, and 
Wray and Thompson (1990) derived a method to com- 
pute the asymptotic rate of inbreeding under selection. 
These algorithms, however, assume the effect of selection 
on inbreeding to be constant over time, or consider its 
value only after a large number of generations. 
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The  purpose  of this paper  is to propose a predic t ion 
a lgor i thm overcoming  this drawback,  l imited to a situa- 
t ion  with separate generat ions.  A M o n t e  Carlo  s imula-  
t ion  was used on  a mass-select ion case to measure  the 
accuracy of the p roposed  algori thm. 

Theory 
Hypotheses 

The quantitative trait is assumed to be genetically determined by 
an additive infinitesimal model generating a normal distribution 
of genetic values at each generation. Environmental effects are 
also assumed to be normally distributed and independent of 
genetic values. Generations do not overlap. The population size 
is constant over generations, with Arm sires and N s dams. It is 
assumed that inbreeding does not affect viability or fertility of 
the animals, nor does it affect the values for the selected trait (it 
is strictly additive). Total panmixy is assumed, i.e., polygyny and 
polyandry are allowed, and matings are at random. The popula- 
tion is closed and mutations are not included in the model. 

Prediction of  the genetic variance 

At each generation, the genetic variance (VA) is partitioned into 
a between-full-sibs family component and a within-family com- 
ponent (VAw). The first term depends on variances in parents, 
VA~ and VA n, respectively, for sires and dams. Due to sampling 
of parents with replacement, the total genetic variance is: 

~ (  1 '  itl 1 /  1 '  VAt'+"= 1 - ~ )  VA, + ~ t l  - Vy) YAi~I + VAt:+ l' (1) 

where the superscripts refer to the generation number at birth. 
Assuming that selection criteria of candidates are normally 

distributed and are independent variates, the genetic variance 
among selected parents is: 

VA~ tl = VA t'l (1 - K s e s 2 it]) (2 a) 

VA~ tl = VA t'l (1 - K e Re 2 m) (2 b) 

with K = i ( i - x ) ,  where i is the standardized factor for intensity 
of selection and x is the truncation point, and where R 2 is the 
square of the correlation between the selection index and the 
true genetic value. As shown by Bulmer (1971), with such a 
polygenic determinism of the trait, the reduction of variance in 
the selected parents corresponds to an increase of linkage dise- 
quilibrium. This phenomenon is statistically described by an 
equation from Pearson (1903), which gives the change in the 
variance-covariance matrix of a vector, X z , when a change in the 
variance-covariance matrix of a vector, X~, occurs: 

X*2 =~22--Z21 ~11 ( Z l l - - 2 ~ l ) ~ 1 1  Z12 (3) 

where E~ represents the variance-covariance matrix between 
vectors X~ and X~ before selection, and the asterisks refer to the 
corresponding matrix after selection. Under the assumption of 
normality of the distributions, applying Eq. (3) to the change in 
genetic variance after one generation of selection leads to Eq. (2). 

The within-family variance is related to the variance of gene 
effects in the previous generation, which is not affected by selec- 
tion (Crow and Kimura 1970, pp. 236-239) but only by drift, 
and to the probability of gene identity at the loci involved 
(Langlois 1990). In a pure drift situation, and in the case of an 
additive model, Foulley and Chevalet (1981) proved that for any 
pair of parents, VA~ is a function of the genetic variance (Vo) in 
the base population (assumed to have reached its linkage equi- 

librium) and of the inbreeding coefficients of the sire (Fs) and of 
the dam (Fe): 

vn   vo0 ,4, 
If the number of loci is not large, Eq. (4) does not hold under 
selection, due to a change in gene frequencies and because the 
probability of gene identity at any selected locus is greater than 
the usual inbreeding coefficient, which is defined for neutral 
genes (Mal6cot 1948). However, Langlois (1990) showed that, 
even under selection, VA w tends to Eq. (4), provided that the 
number of loci is large enough. Verrier et al. (1989) checked this 
result via simulation for a situation of very intense mass selec- 
tion. The small discrepancies they observed were due to a change 
in gene frequencies, and they concluded that Eq. (4) holds well 
under selection, within the limits of the additive infinitesimal 
model. Furthermore, we assume that in a given generation, selec- 
tion does not affect significantly the average coefficient of in- 
breeding of the selected parents (F~ d = Fj 0 = F ttl, where F ttl is the 
average coefficient of inbreeding of the candidates born at gener- 
ation t). Therefore, 
VA[t + 11 _ 1 w - ~ V0(l--F~tl) �9 (5) 

Prediction of  the average inbreeding coefficient 

The proposed method is related to the method described by 
Burrows (1984a, b), and generalizes it to more than one genera- 
tion. By definition, F m is equal to the average coefficient of 
relationship (~) (Mal6cot 1948) among mates born and selected 
at generation t -  1 (~ [s t_ 1, d~_ 1 ]). Under the conditions as- 
sumed (sampling with replacement), the probability of finding 
the pair (i,j) among the parents of the next generation corre- 
sponds to the probability that both individuals will be selected 
at the same time. The probability that the second mate is selected 
given that the first one is selected depends on the correlation 
between the breeding values of the possible mates. In the popu- 
lation of candidates at generation t -  1, four categories of pairs 
(indexed by k) can be found, with an a priori probability nk, 
depending on the identity of their parents born and selected at 
t--2:  1 1 
same sire, same dam nl = N,, Nr (6a) 

same sire, different dams n 2 = - -  (6 b) Nm 

( 1 -  ~-=) 1 (6c) different sires, same dam ~z3 = ~y 

(1 1 1) different sires, different dams n 4 = \ - ~ - j  \ - ~ j .  (6d) 

For simplicity's sake, we will assume that within each class 
of pairs the coefficients of relationship do not vary and are equal 
to ~k. Due to their probabilistic definition given by Mal6cot 
(1948), the ~k'S at generation t-- 1 are computed from the aver- 
age coefficients of relationship at generation t -  2, between sires 
(~b [s,_ 2, st_z]), between dams (~  [dr_ 2 , dt_2] ), and between sires 
and dams ((b[s,_ 2, dt_z]=Fit- l l ) :  

. . , / ' l + F } ' - 2 1 " ~  1/'l-t-Fjt-21.t 

1 i t -  11 1 = 5F + ~ (1 + F  v-2~) (Ta) 

(b~ -11-1- 5Ftt-~l+g(l  x +Ftt-2J)+�88 (7b) 

~[~- 11 = 2fl [t-ll +g(tl +Ftt-21)+C~[st_z,St_2] (7c) 

( j ~ i t -  11 _ 1 ~ - [ t -  i I  j i d ~ [ o  St_2 ] 1 4- _ 5 _  _ a _ t o t _ 2 ,  +g@[dt_2, dr_2]. (Td) 



After selection, the average coefficient of relationship is: 

4 

~b[st_l, dt_l ] =Ft0 - k=l 4 (8) 
~k Qtt- 11 

k = l  

where Qk is the conditional probability that a random pair of the 
category k will be selected simultaneously. If ~k represents the 
correlation between the values for the selection criterion in the 
male (1,.) and the female (If) candidates with the category k, Qk 
is: 

where fie is the standard deviation of the selection criteria. Fol- 
lowing classical notation (Johnson and Kotz 1972) Qk can be 
written: 

Q m - L : x  xd; 0tk'l). k - -  ~ s ,  

The computation of the correlations (0k) is rather difficult 
because of the limited size of the population, which implies 
negative terms in the covariance in each category. For example, 
the covariance between mates of the fourth category is a priori 
negative and not null, as it would he if the population size was 
infinite. The computation of the Qk'S is described in detail in the 
Appendix for the case of mass selection, and its extension for 
other kinds of selection criterion is outlined. Conditional proba- 
bilities (Qk) a r e  computed by numerical integration of a bivariate 
normal distribution using Dutt's method (see Ducrocq and Col- 
leau 1986, for details). These calculations are wall suited to rela- 
tively large populations but, in small populations, they ignore 
classical order and joint order statistics, which implies that a 
random event affecting a male i, e,g., affects all the pairs involv- 
ing this male. 

The same method is used to compute the average coefficients 
of relationship between selected males (4 Is, s]) and between se- 
lected females (,i~ [d, d]), which are used in Eq. (7), probabilities Qk 
being L (x~, x~; 0k) and L (Xd, X s; Ok), respectively. The F: values 
obtained by the proposed algorithm can be compared with the 
observed F, during Monte Carlo simulations, and the F ob- 
tained in a pure drift situation, which can simply be computed 
from the equation 7.1.4 of Crow and Kimura (1970, p. 231): 

1 ( _ / ~ F t t - l l +  1 Ftt_2j 
F[0 = 2 N e + _ 1 N, /  2 N e (9) 

with 

N=4NmN~ 
N~+ N/ 

Algorithms 

Three algorithms using the same expression for VA [Eqs. (1), (3), 
and (5)] but differing by the F value used, can be compared: 
(i) the proposed algorithm, denoted (C), where F is computed 
from Eq. (8); (ii) a "pure drift" algorithm, denoted (N), where F 
is computed from Eq. (9); (iii) a pseudo-prediction algorithm, 
denoted (T), where F is the average value observed in the simu- 
lations. 

Simulation processes 

The initial genetic variance (Vo) was chosen as unity. 
Genetic values in this initial generation were, therefore, 
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randomly chosen out of an N (0,1) distribution. For  the 
other generations, the genetic value of an offspring (Ai) 
was generated from the values of its sire (As) and dam (Ad) 
according to the following formula: 

The corresponding phenotypic values (Yz) were: 

Yi= Ai + fli a~ (11) 

In Eqs. (10) and (11), c~ i and fii are two independent ran- 
dom numbers taken from an N (0,1) distribution, and ~r E 
is the environmental standard deviation, assumed con- 
stant over generations. Equation (4) was used for predict- 
ing the within-family variance in the simulation al- 
gorithm according to the theoretical results of Langlois 
(1990) and the simulation results of Verrier et aL (1989), 
both showing the adequacy of Foulley and Chevalet's 
(1981) equation within the additive infinitesimal model, 
i.e., under the hypotheses of this study. The simulation 
process does not generate data according to the approx- 
imation made in Eq. (5) for the parental inbreeding coef- 
ficients. Therefore, any comparison between observed 
and predicted results would be affected by possible errors 
originating from this approximation. 

At each generation, 3 males and 25 females were se- 
lected, on the basic of their own performance, out of 50 
animals of each sex. The parents of each offspring were 
randomly sampled with replacement in the list of the 
selected possible parents. The corresponding effective size 
(computed as with pure drift) was 10.7. At each generation, 
and for each replicate, the genetic mean (A) and the genet- 
ic variance (VA) were computed from the individual val- 
ues. The average inbreeding coefficient was computed 
from individual coefficients, for all the offspring, and for 
the males and the females selected as parents for the next 
generation. Three values of initial heritability (he 2) were 
considered: 10-6, 0.5, and 0.9; the corresponding popula- 
tions were denoted So, Ss,  and S 9 , respectively. The pop- 
ulation S o was intended to simulate pure drift results. The 
population S 9 was used to test situations where the accu- 
racy of selection could be very high. Each simulation set 
was run with 500 replicates over 30 generations. 

Comparison between observed and predicted results 

Figure I shows the change in genetic variance (VA) in the 
three simulated populations. An important  decrease in 
VA from generations 0 - 1  was observed in the selected 
populations. As pointed out by Bulmer (1971), the higher 
h 2, the larger is this initial decrease: - 22% in S 5, - 36% 
in $9. On the other hand, in the population So, managed 
as with pure drift, the initial decrease was only - 6 . 5 % .  
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Fig. 1. Proportion of genetic variance retained (VA/V0) in the 
three simulated populations. Mean of 500 replicates 
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Fig. 2. Evolution of l-F, where F is the average coefficient of 
inbreeding, in the three simulated populations (I-F curves for S 5 
and S 9 overlap). Mean of 500 replicates 

Next, VA decreased more regularly in the selected popu- 
lations, and was always smaller than in the unselected 
one. However, the absolute difference in VA in the three 
populations decreased over time. By generation 30, the 
remaining variance was only 24%, 19%, and 16% of Vo 
in So, $5, and $9, respectively. 

In the three simulated populations, no significant dif- 
ferences were observed between the average inbreeding 
coefficients of candidates and selected animals. In fact, it 
could be shown, from the values observed for the stan- 
dard deviation between replicates, that a number of 
about 6,000 or 14,000 replicates would have been re- 
quired to assess the significance of the small differences 
observed in the males and females, respectively. Figure 2 
shows the results obtained for the average inbreeding 
coefficient of the candidates. Inbreeding was higher in 
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Fig. 3. Comparison of different algorithms for predicting the 
change in average coefficient of inbreeding (F) in the two select- 
ed populations. Solid lines represent differences between expect- 
ed and observed values of F, as a percentage of observed values. 
Dotted lines represent critical values for a statistical significance 
at the 5% level, computed using the observed standard devia- 
tions between replicates 

selected populations than under drift, with maximum dif- 
ference in the second generation, i.e., the first generation 
when inbreeding was observed: + 7% in S 5 and + 10% in 
S 9 . Furthermore, after this second generation, differences 
were small and not significant between S s and $9 (the two 
curves overlap). The change in F at a given generation 
differed between selected and unselected populations, 
and this difference decreased over time. A comparison 
between Figs. 1 and 2 shows that VA was always smaller 
than V o (1-FEt]), especially in the selected populations, 
and even in a pure drift situation (selfing was excluded, 
since the population was dioecious). 

Under a pure drift siutation (population So), the (C) 
and (N) algorithms provided exactly the same values for 
the average inbreeding coefficient in every generation. 
Consequently, the values of VA provided by (C) and (N) 
were exactly the same. Moreover, with drift, the predic- 
tions of F and VA made from (C) and (N) were in good 
agreement with the observed values in every generation. 

Figure 3 shows a comparison between values of F 
observed in selected populations and predictions based 
on (C) and (N). The average inbreeding coefficient was 
always underestimated, except from algorithm (C) in gen- 
eration 2 (the first generation when inbreeding appeared). 
However, the relative difference between predicted and 
observed values was about three and four times larger 
when F was computed as under pure drift (N) than when 
F was computed using the proposed method. The relative 
differences increased in the first generations and de- 
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Fig. 4. Comparison of different algorithms for predicting the 
change in genetic variance in the two selected populations, rep- 
resented as in Fig. 2 

respectively. The relative difference between observed 
and predicted values was larger when the initial heritabil- 
ity was smaller, and it increased over time: using (C), VA 
was overestimated in the 30th generation, with an amount 
of + 7% and + 3% in $5 and S 9, respectively. Computing 
F under pure drift [algorithm (N)] resulted in relative 
differences that were about 2 and 3.5 times larger than the 
ones observed when using (C), in populations Ss and S 9 , 
respectively, and that were significant from the fifth gen- 
eration on, in both selected populations. As expected, 
predicting genetic variance by using in Eq. (5) the ob- 
served value of F (T) led to results very close to the ob- 
served ones. 

Finally, Fig. 5 shows that the proposed algorithm 
provided predicted responses to selection close to the 
observed ones: in the 30th generation, the genetic mean 
was overestimated by an amount of + 5.4% and + 3.4% 
only in S 5 and $9, respectively. On the other hand, assum- 
ing a constant genetic variance or using equations taking 
into account the effect of selection or drift only induced 
very high biases. 
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Fig. 5. Change in genetic mean, expressed in initial genetic stan- 
dard deviation unit, in the two selected populations (mean of 
500 replicates). Comparison of predictions using different al- 
gorithms for predicting the genetic variance (VA): K -  VA = con- 
stant =Vo; B - Bulmer (1971); W-  Wright (1931); C -  proposed 
algorithm 

creased from the tenth generation on: the effect of selec- 
tion on inbreeding decreased over time, and the intrinsic 
effect of drift prevailed in the mid term. 

A comparison between values of VA observed in se- 
lected populations (S 5 and $9) and predicted values from 
algorithms (C), (/'4), and (T) is shown in Fig. 4. For al- 
gorithm (C), significant differences were observed only 
from the 13th and the 20th generation in $5 and $9, 

Discussion 

The joint effects of selection and drift 

The genetic variance of a selected population is clearly 
smaller than that of an unselected one, with the same 
numbers of parents, where only drift occurs. Our results 
are in agreement with other simulation studies (e.g., 
Sirkkomaa and Lindstrom 1981; Mueller and James 
1983; Murrmann-Kahl and Dempfle 1984). Particularly, 
these results show that under selection, the higher the 
accuracy of selection, the quicker the decrease of VA is. It 
should be noted that the effect of selection on VA is 
maximum in the first generations. Beyond this, the effect 
of drift per se tends to prevail. This phenomenon results 
directly from the decrease in accuracy of selection when 
VA decreases, thus explaining the lower impact of selec- 
tion. 

Results for average coefficient of inbreeding (F) 
showed that selection changes the family structure. These 
results are in agreement with the observation of Lush 
(1946) and the experimental studies by Barria and Brad- 
ford (1981) and Kownacki et al. (1981, 1987). However, 
the observed values of F did not differ with different 
values of the initial heritability (0.5 and 0.9). These results 
are in agreement with the simulation results of Wray and 
Thompson (1990): for mass-selected populations of larger 
size, the rate of inbreeding increased when the initial 
heritability increased from 10 -6 to 0.4, but the same rate 
or a smaller rate was observed between the values of 0.4 
and 0.6. The theories of Robertson (1961) and Burrows 
(1984 a, b), and the method proposed in this paper postu- 
late that the effect of selection on the family structure 
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should increase with the correlation (4) between the val- 
ues for the selection criterion of related individuals. Selec- 
tion decreases the heritability of the trait but, in our 
simulations, large differences between both populations 
still held: in the 30th generation, the corresponding val- 
ues were 0.16 and 0.59 for initial values of 0.5 and 0.9, 
respectively. In such a circumstance, differences in in- 
breeding would have been expected, and the observed 
results are puzzling. A clear understanding of this phe- 
nomenon would probably be useful for constructing 
more accurate algorithms. 

Several other factors could affect the genetic variance 
notably. For example, assortative mating could compen- 
sate the reduction in variance due to selection (see, e.g., 
Fernando 1984; Langlois 1990), and avoidance of close 
mating could decrease the rate of inbreeding in the short 
term. In the case of overlapping generations, the evolu- 
tion of genetic variance is more complex, because it de- 
pends on within-cohort variance and on between-cohorts 
variance. Some simulation results (Verrier 1989) showed 
the erratic decrease of genetic variance in this situation, 
and also showed a much more dramatic effect of selection 
on the rate of inbreeding than in the present simulation 
study. 

The validity of the proposed algorithm 

The proposed method provided predicted values of the 
variance in agreement with observed values in the first 12 
or 19 generations of selection. Using the observed val- 
ues of F for the prediction of VA led to predicted values 
in agreement with observed values. Therefore, prediction 
errors in VA, which appeared in the long term from the 
proposed algorithm, are essentially due to prediction er- 
rors in the rate of inbreeding, which was underestimated 
as early as the first generations. 

The errors of prediction for F are substantially 
smaller than those resulting from ignoring the effect of 
selection. They could be explained by some deliberate 
simplifications of the algorithm, such as ignoring grand- 
parental subclasses, assuming that the population is large 
enough to ignore any order statistics, assuming that per- 
fect normality of selection criteria holds during the selec- 
tion and, finally, ignoring relationships between candi- 
dates when calculating the genetic variance among the 
selected parents. With such a large number of approxi- 
mations, larger discrepancies could well have been ob- 
tained. 

Finally, the most relevant criterion for testing the 
proposed method might be prediction of cumulated ge- 
netic gain. The proposed algorithm provided a good ap- 
proximation for genetic change in the long run for the 
simulated populations, although genetic gains were 
slightly overestimated. Closer predictions would have 
been obtained if the selection differentials had been better 

predicted. This problem is very difficult to solve since 
order statistics are involved, candidates are not indepen- 
dent from one another, and strict normality does not hold 
(Dempfle 1987). 

Possible extensions to other situations 

Extenting the algorithm to situations where the numbers 
of animals are not constant over time and to different 
selection criteria is straightforward. The second case 
would correspond to manipulations of the R 2 and ~ val- 
ues. Some examples are presented by Verrier (1989). His 
predicted results for different criteria, given different 
weights to individual and family information, are in 
agreement with previous simulation results (e.g., Dempfle 
1975; Hill 1985; Toro et al. 1988; Wray and Thompson 
1990). However, accuracy of the algorithm in a situation 
of combined selection has not yet been tested. 

The proposed method could be extended to a multi- 
ple-trait situation to investigate the change in genetic 
correlations with selection. This requires considering ma- 
trices of genetic variance-covariance between the traits. 
The parental matrix could be obtained using Eq. (3) from 
Pearson (1903), and the within-family matrix from Eq. (4), 
and from an extension of this equation to the within-fam- 
ily covariance between traits, proposed by Foulley and 
Chevalet (1981). The computation of the average coeffi- 
cient of inbreeding could be made in adapting the method 
proposed in this paper to the selection index used. 

Hierarchical matings prevent us from considering the 
different pairs of mates as independent events. For in- 
stance, if females are mated to one male only, there are 
only three categories of mates: categories 1, 2, and 4, with 
~*=~3+~4 [Eqs. (6 a) - (6 d)] . With only this modifica- 
tion, the algorithm would be usable. Avoidance of close 
mating could be traited in a similar way, e.g., by suppress- 
ing category 1 (fullsibs mating). Very strong assortative 
(or disassortative) hierarchical matings could be approx- 
imated by dividing the selected parts of the binormal 
distribution, each Qk and ~k corresponding to a weighted 
mean of different probabilities. Other cases, weak assor- 
tative hierarchical matings or assortative nonhierarchical 
matings, would be virtually impossible to treat with this 
algorithm. 

An examination of practical schemes requires an ad- 
aptation of the algorithm to a situation where genera- 
tions overlap. This case is rather difficult, since the family 
structure is very much more complex and the theoretical 
and numerical problems outlined for the separate gener- 
ations case are amplified. The extensions of the algorithm 
we tried to develop turned out to be unsatisfactory; per- 
haps due to the large number of approximations made, 
F values were notably underestimated when compared to 
Monte Carlo simulation results (Verrier 1989). 



Conclusions 

The simulations presented confirm the complexity of the 
jo int  effects of selection and drift on change in inbreeding 
and genetic variance in popula t ions  of l imited size. They 
refute the validity of the concept of effective size in such 
a situation. A probabil is t ic  approach  to predict  the 
change in the average coefficient of inbreeding, taking 
into account all the parameters  of selection, should be 
used. Compar ison  between observed and predicted re- 
sults clearly showed that  the most  critical point  for re- 
search lies here. Within our hypothesis (additive infinites- 
imal model, r andom mating, separate generations), the 
a lgori thm we tested proved to be rather  satisfactory. I t  
could be used under simplified condit ions to compare 
different strategies of selection with respect to accumulat-  
ed genetic gain in the mid- or long-term. However, adap-  
tat ion of the proposed  method to overlapping genera- 
tions is difficult, and further research is clearly needed to 
provide an efficient a lgori thm for predict ion well suited 
to practical  selection schemes. 

Appendix 

Computation of the correlation between values 
for the selection criterion 

In the case of mass selection, the correlation (0) between values 
for the selection criterion of two individuals, i and i', is the 
correlation between their own performance, Y/and Ye: 

Cov(~, ~,) 
~o = (A1) 

O'y~ 0 y i  ' 

The genetic model is strictly additive, and we consider no com- 
mon environmental effect. Therefore, in a population of infinite 
size, the covariance between Y/and Yv is a simple function of the 
covariances beween the breeding values of the sires (A s and A s, 
respectively) and of the dams (A d and A d, respectively). Due to 
random mating, the covariances between the breeding values of 
parents of different sexes (A:, Ax) and (A~,, Ad) are null; there- 
fore, 

Cov(Y. ~,)=~ a-Cov(A~, A,,)+ a CoV(Ad, Ad, ) . (A2) 

The limited size of the parental groups induces negative terms in 
the covariances in any situation. Therefore, the computation of 
has to take into account the random fluctuation of the means of 
the variables involved. 

Consider, for any random variable X, observed on N indi- 
viduals, the mean X, and for any individual the value X* defined 
a s :  

X:~= X , -  %. (A3) 

We have to compute in fact: 

Cov (A,, _ _ Ar 7CoV(Ad, AdO (A4) 
as. ar~ 

By construction, X* and )( are independent. If we note 
a 2 = Var Xi, then, 

VarX*=Cov(X*,  X * ) = a 2 ( 1 - 1 ) ,  (A5) 
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and 

Coy (X*, X*) = - Var X - - ax2 (A6) 
N 

Applying Eqs. (A5) and (A6) to Eq. (A4) leads to the expres- 
sion of the correlations between mates of the four categories 
defined in the text [Eqs. (6a)-(6d)]: 

S,,] NyJ J 

z - 4D L \  N,J N I .] 

t l  1 V  1 t 2  t 
�9 ~ [ -  ] - I I - - - - V A [ -  ]~-  1 

~,_,j 1 F I VA~,_~j ZVA~,_2~ 7 ~~ : ~ L - - ~  IVy J (A7d) 

with, 

1 1 @ J  [VAt'- u + VEt. (A7e) 

In these expressions, N represents the numbers of parents and T 
the numbers of candidates, with the indices m and f for the 
males and the females, respectively. 

The extension of Eq. (A7) to any criterion selection is easy 
because, on the one hand, the variance of the criterion is always 
known and because, on the other hand, it is possible to express 
the covariance between criteria as a function of the covariance 
between breeding values (Colleau and Poutous 1973). However, 
Eqs. (A7a)-(A7e) consider only the covariance between 
parental breeding values, and do not consider the individual 
deviations from the family mean. Following the previous argu- 
ments, it can be shown that, for two fullsibs, there is a negative 
covariance between the deviations of their own performance (Yu 
and Y//) from their family mean (Y~.): 

-Va r  Y Cov(Yu-Y., Yu,- Y.) 
n 

where n is the family size. Therefore, the complete expression of 
~o is more complex (see Dempfle 1987, for the correlation between 
fullsibs). However, some numerical results (Verrier 1989) show 
that the negative covariance between individual deviations has 
a significant effect on the values of Q only when the deviation has 
a great weight in the criterion. In practice, it is necessary to take 
this covariance into account only when selection is based on the 
deviation from the family mean, with no attention to the number 
of selected parents in each family ("deviation selection" of Hill 
1985, or "unrestricted within-family selection" of Dempfle 1987). 
On the other hand, Eqs. (A7a)-(A7e) or the extension of these 
equations are a good approximation in the case of mass selection 
or combined selection. 
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